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Abstract—Clinical trials are an essential source of informa-
tion for practicing Evidence-Based Medicine because they help
to determine the efficacy of newly developed treatments and
drugs. However, most of the existing trial search systems focus
on a specific disease (e.g., cancer) and utilize disease-specific
knowledge bases that hinder the adaptation of such methods
to new diseases. In this work, we overcome both limitations and
propose a graph-based model that explores both clinical trials
and the Pubmed databases to alleviate the shortage of relevant
clinical trials for a query. We construct a large heterogeneous
graph (750K nodes and 1.2 Million edges) made of clinical trials
and Pubmed articles linked to clinical trials. As both the graph
edges and nodes are labeled, we develop a novel metapath-
based similarity search (MPSS) method to retrieve and rank
clinical trials across multiple disease classes. We primarily focus
on consumers and users that do not have any prior medical
knowledge. As there are no multiple disease-wide trial search
evaluation datasets, we contribute a high-quality, well-annotated
query-relevant trial set comprising around 25 queries and, on
average, approximately 95 annotated trials per query. We also
perform a detailed evaluation of MPSS on the TREC Precision
Medicine Benchmark Dataset, a disease-specific clinical trial
search setting. We make all the codes and data publicly available
at https://github.com/roysoumya/MPSS-clinical-trial-search .

Index Terms—clinical trial, citation network, metapath-based
similarity search, interpretability

I. INTRODUCTION

The clinical trial search system stakeholders include medical
professionals and patients or consumers; they satisfy their
information needs through online trial search interfaces such as
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Clinicaltrials.gov, WHO ICTRP, EmergingMed.com, etc. Clini-
cal trials are an important source of information for practicing
Evidence-Based Medicine because they provide the earliest
source of information about new drugs and treatments [1].
However, information needs significantly vary based on stake-
holders. Patel et al. [2] observed that information needs for
such ordinary users are related to a medical condition, location,
and treatment. The primary focus of this work is ordinary users
(patients or consumers).

Given a query as input from the user, the task of clinical
trial search consists of two parts — (i) retrieval of relevant
documents w.r.t a query from a clinical trial corpus (in our
case, ClinicalTrials.gov), and (ii) ranking of the retrieved doc-
uments based on specific criteria. TREC Precision Medicine
track of 2017-2020 ( [3], [4]) focused on retrieval of oncology-
related documents from evidence-based treatment literature
and clinical trials (based on ClinicalTrials.gov data). More
recently, TREC Clinical Trials tracks of 2021 and 2022 [5]
focus on matching patients to relevant clinical trials; the
main difference with the TREC Precision Medicine track is
the nature of the query. The queries in the TREC Clinical
Trials track are synthetic patient cases created by individuals
with medical training in the form of an admission note.
However, the TREC Precision Medicine track queries contain
the disease, gene, variant, and demographic information in a
fixed schema. However, in this work, we develop a trial search
system that takes free-form medical queries such as ‘dietary
approaches for obesity treatment,’ ‘managing constipation in
children.’ as input from the user (more details in Section III-B).
The primary motivation behind making free-form queries is to
make the trial search interfaces easy to use for ordinary end
users [2].

There exist certain limitations of the prior works, broadly
due to the following reasons — (i). Focusing on specific dis-
eases: The TREC-PM task focuses on oncology-based trials;
queries are quite specific in nature, requiring gene and variant



Fig. 1. Methodological overview of MPSS.

information within the query itself. Hence, methods proposed
in this track heavily utilize cancer-specific knowledge bases
like COSMIC [6] to expand queries and improve recall of
retrieval systems. A drawback of such systems is that it
fails to generalize to other disease classes and thus lead to
the proliferation of disease-specific trial search engines like
eTACTS [7] and Antidote [8]. Furthermore, their dependency
on cancer-specific training data and knowledge bases hinders
their adaptability to other disease classes; it disproportionately
affects rarer MeSH disease classes like Digestive System
Diseases and Eye Diseases. (ii). Term mismatch between
queries and trials: Prior works [9], [10] rely on exact match-
ing of UMLS concepts between queries and clinical trials.
However, this depends on the terms specified by end users and
suffers from sparsity effect and poor recall performance, i.e.,
many relevant clinical trials are missed due to a lack of exact
matching in UMLS concepts. (iii). Limitations in addressing
multi-dimensional needs: A stakeholder may have different
information needs, i.e., some might be interested in relevant
and popular trials, whereas some might be concerned about
adversarial effects. However, existing trial retrieval systems
primarily focus only on relevance. (iv). Model interpretabil-
ity: Existing retrieval systems [11], [12] use the complex
knowledge base and graph neural network (GNN) based
methods to retrieve clinical trials. Unfortunately, such models
are opaque in nature and do not provide any clues to the end-
users about the ranking of the trials. Besides, post-hoc GNN
explanation strategies have limitations [13], and this poses
a challenge in their application to critical domains such as
medicine.

To overcome the above limitations, in this paper, we pro-
pose a MetaPath based Similarity Search (MPSS) method
(Figure 1). We first extract the medical concepts for a given
query using the QuickUMLS tool [14]. However, the retrieved
trials are fewer in number. Hence, we collect the bibliographic
information from the Pubmed database and develop an infor-
mation network composed of two node types - Clinical Trials
and Pubmed articles. A clinical trial and a linked Pubmed
article are connected via reference patterns, i.e., if a Pubmed
entry Y exists for a clinical trial X , we have an edge from
X → Y (see Section IV-B). Finally, we perform a metapath-
based search over this graph to retrieve relevant trials and rank
them based on different aspects such as relevance, adversity,
and popularity.

We evaluate our proposed method MPSS over 25 queries

from five different disease classes. Experimental results sug-
gest the efficacy of our proposed retrieval-ranking framework;
we improve over the STM baseline model by 10.71% and
15.38% in terms of precision@5 and precision@10 metric,
respectively. Further, we evaluate MPSS on the TREC 2018
Precision Medicine (PM) benchmark dataset and achieve a
Precision@10 score of 0.432 as compared to the SOTA model
(Team Cat Garfield [12]) that achieves 0.626; MPSS also
achieves a moderate recall performance of 0.588, highlighting
the efficacy of the Pubmed-enhanced retrieval component
of our proposed MPSS model. Our proposed model MPSS
is more interpretable and shows the exact reason (query
similarity, linked knowledge bases, or the Pubmed citation
network) behind retrieving a trial for a given query. We
further highlight the advantage of the unsupervised nature
of MPSS and posit that it will thus allow the inclusion of
rarer diseases. We thus show the generalizability of MPSS
on the TREC 2018 Precision Medicine track that deals with
only cancer-related queries. MPSS achieves a modest per-
formance in an unsupervised manner as compared to the
supervised SOTA models. We make the codes and data (in-
cluding our constructed disease-independent evaluation dataset
as described in Section III-B) publicly available at https:
//github.com/roysoumya/MPSS-clinical-trial-search.

II. RELATED WORK

Here, we provide an overview of the recent clinical trial
systems and the issues consumers or ordinary users face. We
then discuss our proposed model in the context of similarity
search techniques on heterogeneous information networks.

A. Clinical Trial Search Systems

Zuccon et al. [15] explore different strategies for developing
knowledge-base-based consumer health search systems. Bal-
aneshinkordan et al. [16] develop a Markov Random Fields-
based retrieval model that jointly optimizes the weights as-
signed to statistical and semantic unigram, bigram, and multi-
phrase concepts extracted from query and document collection.
Team MedIER [17] utilizes medical ontologies and performs
query expansion techniques for TREC 2017, and the same
team develops a system [18] based on document re-ranking
and query generation in TREC 2018. Balaneshinkordan et
al. [19] also used medical ontologies like the Unified Med-
ical Language System (UMLS), the Drug-Gene Interaction
Database (DGIdb), and the Catalog of Somatic Mutations in
Cancer (COSMIC), for query expansion purposes.
Trial search issues faced by ordinary users: Generally,
ordinary users face difficulty in formulating useful queries
because it involves complicated medical terminologies. Nunzio
et al. [20] investigate a combination of query formulation
strategies for the clinical trial search; both expansion and
reduction techniques – based on knowledge bases to increase
the probability of finding relevant documents. Additionally, the
content of trial search sites like ClinicalTrials.gov contains
technical content and is written at a considerably higher
reading grade level than the average user (or consumer),



hindering the accessibility to the trial information [21]. In
this work, we focus only on ordinary users from non-medical
backgrounds, such as patients and consumers, and develop the
design of our clinical trial search system accordingly.

B. Similarity Search in Heterogeneous Information Network

Sun and Han [22] provide an overview of working with
interconnected and multi-typed data, particularly operations
like similarity search and structural analysis. A metapath-based
similarity measure, PathSim [23], is used to find peer objects
in a network and outperform random-walk-based similarity
measures. HeteSim [24] can be used to compute relevance
scores between nodes (in a network) of different types. Thi-
lakaratne et al. [25] survey the computational approaches used
for Literature-Based Discovery, which uses the connections
among different entity types like paper, author, or venue in
a bibliographic network setting, to detect implicit knowledge
associations. Martin et al. [26] develop a web-based interface
to assist medical professionals in updating systematic reviews
that collates and augments information from bibliographic
databases, Clinicaltrials.gov registry, and user actions. In this
work, we contribute a novel heterogeneous information net-
work constructed by linking clinical trials to Pubmed articles
through direct publications and Pubmed articles used as study
references. To the best of our knowledge, this is the first
usage of the Pubmed citation network to improve the retrieval
performance of a clinical trial search system.

III. DATASET

In this paper, we evaluate the performance of our proposed
method (MPSS) over two different kinds of clinical trial
datasets— (i). General clinical trial retrieval dataset (queries
and relevant trials for five different diseases), and (ii). TREC
Precision Medicine Track 2018 for search over ‘Neoplasms’
disease class made of 50 queries. Here, we describe the
document collection for the clinical trial search task, followed
by the details of the above two datasets.

A. Clinical Trial Corpus

We use the dump of AACT database [27] (AACT-DB)
dated May 2020. It consists of around 331, 713 clinical trials.
In this study, we focus on utilizing the Pubmed bibliographic
database to improve the retrieval performance of a trial search
system. The Food and Drug Administration Amendments Act
(FDAAA) mandates timely reporting of results of applicable
clinical trials to ClinicalTrials.gov [28]; these results are thus
made publicly available as Pubmed articles in certain cases.
We select trials with at least one linked Pubmed article.
Medical Subject Headings [29] (MeSH) is used for indexing
the PubMed database. It also should have at least one MeSH
term, and the trial is not ongoing (trial status is completed,
terminated, suspended, or withdrawn). The trials are then
mapped to all the 26 MeSH disease classes. To map a trial
to its respective disease class, we first extract the MeSH terms
corresponding to a clinical trial from the browse conditions
table of AACT-DB, which we then match with the MeSH

thesaurus (tree-like hierarchy). Table I provides an example of
mapping a clinical trial to MeSH disease classes. We observe
that a disease is present at the root of a tree in most cases.
Thus, a clinical trial is mapped into one or more disease classes
(out of 26 in total).

TABLE I
MAPPING A CLINICAL TRIAL TO MESH DISEASE CLASSES

Trial ID NCT00000106
Brief
Title

Whole Body Hyperthermia for the Treat-
ment of Rheumatoid Diseases

MeSH
Term

Rheumatoid Diseases Hyperthermia

MeSH
Tree

C05.799 C23.888.119.455

Disease
Class

Musculoskeletal Dis-
eases

Pathological Conditions,
Signs and Symptoms

In this paper, we focus on the top five most frequent
disease classes present in the above-mentioned clinical trial
corpus (the disease classes are outlined in Table II). We avoid
including rarer classes due to the paucity of ground-truth data
to evaluate them. We focus on frequent classes, which demand
significant human effort for annotation. It results in a total
of 67237 trials. We do not consider trials that belong to the
‘Neoplasms’ disease class because it is already covered in the
TREC Precision Medicine track [3], [4] and typically consists
of more sophisticated queries which include gene and mutation
information.

B. Construction of Disease-independent Evaluation Dataset

Here, we describe the construction of the query-relevant
trial set for performance comparison of MPSS with baseline
trial search systems. We aim to make the queries both gen-
eralizable as well as representative of real-life user queries
on trial search engines. First, we select queries from five
different disease classes to maintain the generalizability of
the results as opposed to the TREC Precision Medicine task
that focuses only on oncology-related queries. Second, we
obtain semantic-based query templates identified by Patel et
al. [2] based on the user (query) logs of the TrialX search
engine; the most frequent user query template is disease or
syndrome + research activity. We select the following subset of
templates for preparing the queries: (i). (disease or syndrome)
+ (symptom or treatment) (such as dietary approaches for
obesity treatment), (ii). disease + age group (like managing
constipation in children), (iii). disease + safety information
(like safe treatment for Alzheimer disease). The frequently-
used query templates ( [3], [4]) consisting of location and gene
information are not considered for this work. We also consult
a patient vocabulary-based lexicon called MedDRA [30]. We
select five queries for each of the five disease classes (outlined
in Table II) for evaluating the performance of MPSS.

We next outline the steps for determining the 25 query sets
we use for evaluation purposes. First, we obtain all the diseases
that fall under each disease class using the MeSH hierarchy for
each of the five disease classes. Second, we apply the templates
mentioned above to generate all possible queries (construction



of candidate queries). We use two rules for filtering the
candidate queries: (i). one query is generated based on a given
disease name. (ii). a query should retrieve at least 10 trials
using the model developed by Throve [10] (baseline model) in
the TREC 2017 Precision Medicine Track [3] in order to avoid
rare queries w.r.t the clinical trial corpus. It performs Elastic
Search for clinical trial retrieval and then uses the Okapi BM25
as the ranking function.

We next divide the queries into two types based on the safety
aspect.

1) Type-I: When the query mentions the safety require-
ment, the ranking algorithm should prioritize trials hav-
ing no reported adverse events. The queries are like con-
stipation safe treatments, hypertension safe treatments,
safe treatment for Alzheimer disease, safe treatments
for asthma. When constructing such queries, we use a
manually curated lexicon set consisting of safety-related
words like safe, safety. We use such a lexicon-based
technique because it ensures high precision. Sophisti-
cated approaches might exist to detect such terms. It
will help further boost the performance of our proposed
approach. However, extensive coverage of such terms is
beyond the scope of this work.

2) Type-II: This includes all the remaining queries, not
Type-I, such as haemorrhage cure, Early Parkinson
disease treatment, Treating Anemia Iron-Deficiency in
CKD patients.

We keep one Type-I query for each disease class while the
remaining four are Type-II (a total of 5 queries). Three annota-
tors label the retrieved trials for each of the 25 queries; none of
them is the author of this paper and knows good English. We
strictly adhere to the annotation scheme (‘Definitely Relevant’
category) introduced in the TREC Precision Medicine 2018
task [4]. Around 95 trials are annotated on average per query.
Here, the annotators are asked to mark whether each trial of
the retrieved trial set is relevant to a given query.

C. TREC Precision Medicine Benchmark Dataset

We also test the generalizability and disease-independence
capability of MPSS by evaluating a benchmark dataset from
the 2018 TREC-PM Track [31]. The task focuses on searching
oncology disease-related clinical trials over the ClinicalTri-
als.gov database and provides 50 query-relevant trial sets for
evaluation purposes. Oncology belongs to the MeSH [29]
disease category of Neoplasms.

Here, the query follows a pre-defined schema with the
following category descriptors - <disease>, <variant (gene
and mutation)>, <age>, and <gender>. For each query, a
set of relevant trials manually annotated by medical experts
are provided, which acts as the ground truth in our case.
We consider trials with query relevance marked as ‘Partially
Relevant’ or ‘Definitely Relevant’ as relevant (binary) for
this study. We further observe that 16% and 20% of queries
contain less than 5 and 10 relevant trials in the ground truth,
respectively; this further highlights the strong difficulty level
of the clinical trial search task. Regarding the document

TABLE II
QUERY LIST OVER FIVE MOST FREQUENT MESH DISEASE CLASSES

Disease Class Query
Pathological
Conditions, Signs
& Symptoms
(PAT)

constipation safe treatments, haemorrhage cure,
low back pain therapy workout, postoperative
delirium, managing constipation in children

Cardiovascular
Diseases (CVD)

hypertension safe treatments, treating people al-
ready having hypertension, recommended anti-
platelet doses for treating Coronary artery disease,
out of hospital cardiac arrest, Nonvalvular atrial
fibrillation

Nervous System
Diseases (NER)

Dietary Therapy Epilepsies, safe treatment for
Alzheimer disease, serious sleep apnea, Outcomes
of cerebrovascular accident, Early Parkinson dis-
ease treatment

Nutritional
and Metabolic
Diseases (NMT)

dietary approaches for obesity treatment, Treating
Anemia Iron-Deficiency in CKD patients, Hyper-
cholesterolemia safe treatments, malnutrition in
young children, already having Celiac Disease

Immune System
Diseases (IM)

safe treatments for asthma, antiretroviral therapy
first time, serious Rheumatoid arthritis, HIV infec-
tion Treatment naive, HIV infection seronegativity

collection, we focus only on clinical trials that belong to
Neoplasm disease class, which leads to 7398 trials, out of
which 54.2% is linked to a PubMed article.

IV. MPSS METHODOLOGY

The detailed methodological overview of the proposed
metapath-based similarity search (MPSS) is presented in
Figure 2. In this section, we elaborate on the retrieval and
ranking components of the MPSS.

A. Clinical Trial Retrieval

Here, we describe the retrieval components of the proposed
clinical trial search system, MPSS. It comprises two com-
ponents - query concept extraction, followed by match-based
retrieval.

1) Query Concept Extraction: An unsupervised, scalable
medical concept extraction tool QuickUMLS [14], is
used to extract UMLS medical concepts from a query.
For example, the query ‘malnutrition in young children’
contains two medical concepts: (i) child malnutrition
(semantic class: disease or syndrome), and (ii) young
(semantic class: temporal concept).

2) Match-based Retrieval: A set of UMLS medical con-
cepts now represents each query. We follow the same
methodology to represent a trial as the set of UMLS
medical concepts extracted from its brief title and brief
summary fields. We adopt a conservative approach and
retrieve the clinical trials (brief title and summary fields)
containing all the UMLS concept ids present in query q.
We term this Simple Term Matching based algorithm as
STM. We keep the matching constraint tighter to take
care of false-positive trials. However, this, in turn, may
affect the recall part, i.e., STM can retrieve only a few
trials per query. To circumvent that issue, we extend
the initial retrieval set using a metapath-based similarity



Fig. 2. Methodological overview of MPSS. A user enters a query in free-form text, and medical concepts are extracted from the query, which is
then used to retrieve relevant trials for the clinical trials registry database. Our proposed metapath-based similarity search algorithm that uses the
Pubmed bibliographic network is used to improve the retrieval performance of MPSS. We then introduce three meta-data-based ranking aspects
of relevance, adversity, and popularity, as well as a single ranked list combining all the aspects through aspect-based rank fusion. MPSS follows a
faceted search paradigm where the user is given the option to select any one (among four) ranking aspects based on the user’s information need.
We present the metapath as explanations in the final ranked list in case of the additional trials retrieved using Pubmed-enhanced retrieval, which
makes the trial search results more explainable

search. We describe our approach in detail in the next
section.

B. Pubmed-enhanced Retrieval using Metapath-based Simi-
larity Search

This section consists of two major components — (i). Build-
ing a heterogeneous information network of clinical trials
and PubMed articles and (ii). Developing a metapath-based
similarity search algorithm to retrieve relevant clinical trials
for a given query.

1) Construction of Heterogeneous Information Network:
We first describe the nodes and edge details of our heteroge-
neous information network. It consists of two types of nodes:
clinical trials (CT) and Pubmed articles (PM), and three types
of edges: direct, reference, and cite. The different edge types
are described as follows:

1) Direct: It corresponds to the Pubmed article(s) published
for a clinical trial after its completion. In Pubmed,
registry numbers are included in the Secondary Source
ID (SI)1 field. It is bidirectional, and thus both the links
CT → PM and PM → CT exist. It forms a many-
to-many relationship; for example, one CT is linked to
multiple PMs ( NCT00000542 to 30906106, 30590387)
and one PM to multiple CTs (30890109 is linked to
NCT00226096 and NCT00716079).

1https://www.nlm.nih.gov/bsd/mms/medlineelements.html#si

Fig. 3. Subgraph sample of heterogeneous information network. CT stands
for Clinical Trials, and PM stands for Pubmed articles.

2) Reference: It arises when Pubmed articles act as ref-
erences or references for the results of a trial. This
information is directly available in study reference table
of AACT-DB. It is unidirectional and corresponds to
CT → PM.

3) Cite: Pubmed articles are linked to their citations that
are also Pubmed articles. We obtain the citations using
Europe PMC’s RESTful API2, and only consider the
top fifty most-cited papers as citation links to form
edges in the heterogeneous information network be-
ing constructed. It is unidirectional and corresponds to
PM → PM.

Thus, in essence, we use the Pubmed bibliographic network
that contains around 750K nodes and 1.2 million edges.

2https://europepmc.org/restfulwebservice



TABLE III
METAPATH TYPES ARRANGED IN DESCENDING ORDER OF THE DEGREE OF

STRENGTH BETWEEN SOURCE AND TARGET CLINICAL TRIAL (MP1 IS
STRONGEST AND MP6 IS WEAKEST)

Metapath Type Condition

MP1 CT
direct

−−−−→ PM
direct

−−−−→ CT

MP2 CT
direct

−−−−→ PM
reference

←−−−−−−− CT

MP3 CT
reference

−−−−−−−→ PM
direct

−−−−→ CT

MP4 CT
direct

−−−−→ PM
cite

−−−→ PM
direct/reference

←−−−−−−−−−−−− CT

MP5 CT
reference

−−−−−−−→ PM
reference

←−−−−−−− CT

MP6 CT
reference

−−−−−−−→ PM
cite

−−−→ PM
direct/reference

←−−−−−−−−−−−− CT

Essentially, the Pubmed articles act as a bridge connecting
the clinical trials. Thus we utilize the Pubmed bibliographic
network to form connections between two trials and assign
the degree of similarity based on the sequence of edge types
(elaborated in the next paragraph). These clinical trials are
usually poorly connected; therefore, we observe the presence
of 91.64% of Pubmed articles. The largest component com-
prises 93.39% of all the nodes and 97.03% of all the edges.
20559 clinical trials are isolated, i.e., they form singleton
components. Fig. 3 shows possible graph connections.

2) Metapath-based Similarity Search to Improve Retrieval
Performance: After developing the information network, we
perform metapath based graph traversal to retrieve relevant
trials. Table III shows the different metapath variants. It is
arranged in decreasing order of relationship strength between
the source and target clinical trials. Here, we denote the trial
for which similar trials are being searched for as source trial,
and the retrieved candidate trials with which the source trial
is being matched as target trial.
Metapath-based Similarity Search Algorithm. Here, we
develop an algorithm that computes the similarity set for each
trial SimSet(CT ) in an offline manner, which means that
the computation is carried out only once and does not change
during the retrieval period. When a new query is given, we
retrieve the relevant trials using UMLS concept mapping and
then expand that set using precomputed SimSet(CT ). We
formally define SimSet(CT ) as the number of nodes of type
‘CT’ within two hops irrespective of the type of metapath
linking it. We first introduce the three types of restrictions
that we use in our proposed metapath-based similarity search
algorithm:

1) Most Restricted: For a given CTq , we retrieve
precomputed SimSet(CTq), but we do not
allow any CTs that are connected to CTq via
edge − type : citation, i.e., MP4 and MP6 metapaths.
However, if the number of retrieved trials is less than
maxSS, we will use a moderate condition.

2) Moderate: Here, we maintain the same two-hop
condition as before but allow MP4 and drop only trials
connected via MP6. However, still, for trials for which
the number of retrieved trials is less than maxSS, we
will impose a most relaxed condition.

3) Most Relaxed: Here, we consider all edge types to be
the same and do not discard any trials based on their
edge− type.

We do not assign any similarity to the heterogeneous graph’s
isolated clinical trial nodes (whose component size is one).
Through the above-mentioned three conditions, we try to
balance the coverage (recall) and quality of the new retrieved
trials (precision). We achieve that balance by empirically
determining the maximum number of similar trials obtained
for each trial (Maximum SimSet size, maxSS) as five (see
section V-B for empirical results).

C. Aspect-based Ranking of Clinical Trials

After retrieving the relevant trials, the next task is to
rank them based on the aspect (Relevance, Adversity and
Popularity) provided by the user. We follow the approach of
faceted search [32], where the user can select the ranking
aspects and thus provide a form of filtering mechanism to help
narrow down the search results. Users may opt for a single
ranked list automatically constructed by aspect-based rank
fusion combining all three ranking aspects if the users do not
need any specific aspect. Next, we describe individual ranking
aspects followed by two novel aspect-based rank fusions.

1) Defining Individual Ranking Aspects: The different
ranking aspects are defined as follows:

1) Relevance: An undirected graph G(V, E) is first con-
structed using the clinical trials retrieved for a given
query as vertices. The edge weights between (Vi, Vj)
vertices are computed as the Szymkiewicz–Simpson
coefficient [33] between clinical trials in terms of UMLS
concepts extracted from brief title and brief summary
fields of a clinical trial. We then apply PageRank [34]
algorithm on graph G (comprises around 100 nodes on
average since for each trial from the retrieved trial set, 5
more similar trials based on SimSet(CT ) are retrieved
on average. As reported in Section III-B, we annotate
all the retrieved trials for each query, leading to the
annotation of 95 trials per query. With Pubmed-enhanced
retrieval, five additional trials on average are retrieved.
This leads to a total of 100 trials retrieved per query, and
we perform PageRank over these trials and determine the
importance of a given trial based on the PageRank score.
We now compute the total count of the presence of all
the terms (present in a synset) in the brief summary and
brief title fields of a trial and use it as a measure to
determine the trial relevance w.r.t a query. We first rank
the trials in the decreasing order of the brief summary
count, followed by decreasing order of the brief title
count and PageRank score for tie-breaking.

2) Adversity: After retrieving the relevant trials, the trials
are first ranked in non-decreasing order in terms of
the number of subjects affected (using the Subjects
Affected field). Trials with no reported adverse events
(i.e., number of subjects affected is equal to zero) are
placed at the top of the ranked list.



3) Popularity: We map each clinical trial to the linked
Pubmed articles (one-to-many relationship) and finally
determine its corresponding citation count; we sum the
citations in case a trial is mapped to multiple Pubmed
articles. We use the REST API [35] service provided by
NCBI E-utilities for this task. The retrieved clinical trials
are first ranked in decreasing order of citation count
(popularity value) and use the Relevance ranking aspect
for tie-breaking.

2) Aspect-based Rank Fusion to obtain a Single Ranked
list: Although multiple ranked lists may be optimal for some
users, it may be helpful also to provide a single ranked list
that combines all the aspects in case a user does not have a
specific ranking aspect in mind. In the single aspect rankings,
we do not focus on the query assignment, i.e., whether the
user is interested in the trial safety (Type-I queries). Based
on this requirement, we propose three different variations of
MPSS.

1) METARRF: Here, the user does not provide the query
type (i.e., Type-I or Type-II); hence, all the ranking
aspects are given equal weights using an unsupervised
rank fusion method called Reciprocal Rank Fusion
(RRF) [36] to produce a single ranked list. Formally,
given a set of D documents to be ranked and a set
of rankings R, we determine the combined ‘RRF-based
relevance score’ for each document d ∈ D as:

RRF − Score(d) =
∑
r∈R

1

k + r(d)
(1)

where r(d) is the rank of document d in ranking r, and
k is a parameter intended to reduce the impact of low
ranks on the score (in our experiments, we used k as
equal to the minimum value between the total number
of retrieved trials and 60 (the value recommended by
authors of the original paper [36]).

2) METAADV: Here, the adversity aspect is given the
most importance, whereas relevance and popularity are
given the same weight. We first rank the retrieved
trials based on the adversity aspect. Then, for the ones
that do not have any adverse events reported, we rank
them in descending order of their respective ‘RRF-based
relevance score.’

3) METACOMB: We combine the power of both
METARRF and METAADV. For Type-I queries, we de-
ploy METARRF over the clinical trials, and METAADV
is applied for the rest of the queries.

D. Adaptation of MPSS for TREC 2018 Precision Medicine
Track

As mentioned in Section I, our objective is to design a
retrieval framework independent of any specific disease class.
However, the precision medicine track (PM) contains cancer-
related trials that cover other information such as genes,
mutation, etc. Section III-C further explains the task objective,
query, and problem setup in a detailed manner. Hence, we

TABLE IV
AN EXAMPLE OF EXTRACTING GENE SYNONYMS AND INTERACTING

DRUGS, GIVEN gene name FROM QUERY

Query Disease: melanoma, Gene (Variant): BRAF
(V600E), Demographic: 64-year-old male

Gene Name BRAF (Entrez Gene Id: 673)
Variant V600E
Gene Description B-Raf proto-oncogene, serine / threonine kinase
Gene Synonyms
from NCBI Gene

NS7, B-raf, BRAF1, RAFB1, B-RAF1

Interacting Drugs
from DGIdb

pictilisib bismesylate, panobinostat, binimetinib,
oxaliplatin, fostamatinib, ...

modify the retrieval and ranking component of the MPSS
approach to make it applicable to TREC PM dataset.

1) Pubmed-enhanced Retrieval.: Table IV shows the query
processing steps utilizing various biomedical databases for
retrieving the trials relevant to a given query. The following
steps are executed to retrieve the trials:

1) We filter the trials from the entire corpus based on
age (numerical value) and gender fields. Instead of
free-flowing textual queries, TREC 2018 queries are
structured into three parts such as disease, gene, and
demographic, as depicted by an example in Table IV.

2) We perform concept-based matching (i.e., overlap in
terms of UMLS medical concepts) on disease field with
conditions field of a clinical trial. The concept-based
matching is performed with QuickUMLS [14].

3) We then use regular expression-based matching to sepa-
rate the gene and mutation information from the ‘variant’
field. The Gene field of a query mainly contains genetic
variant or mutation information.

4) We further improve the retrieval performance (in terms
of recall) using a metapath-based similarity search,
which leads to the addition of trials from the “Neo-
plasms” MeSH disease class (4013 out of a total of
7398 ‘Neoplasms’ trials are linked to a Pubmed article)
to our previously constructed heterogeneous information
network (see Section IV-B1).

5) We also introduce a new metapath type where we
connect two trials with a common Pubmed article as a
reference or result reference. This helps to mitigate the
sparsity issue, which is further heightened as the task
focuses on a single disease class of ‘Neoplasms.’

6) We utilize the Drug-Gene Interaction Database [37]
(DGIdb) for identifying Pubmed articles that report drug
interactions with a specific gene (identified by Entrez
Gene Id [38]). We then use the constructed hetero-
geneous information network to extract clinical trials
having a Direct-type link with such Pubmed articles
(based on drug-gene interaction). This further improves
the retrieval performance of MPSS, particularly recall.

2) Ranking Based on Relevance.: We first rank the trials in
non-increasing order of Gene Relevance (based on similarity
to the ‘Gene’ field of a query), followed by individual term
frequency terms for Mutation, Gene, and Gene synonyms
(see Table IV), and finally by PageRank score (based on the



importance of a trial among the retrieved set in terms of trial
metadata).

1) Computing Gene Relevance: We assign a gene rel-
evance score as two when both gene and variant in-
formation match and one when only the gene matches
without the variant information. To perform a gene
match, we first perform UMLS concept-based matching
using QuickUMLS between the ‘Gene’ field of a query
and trial metadata (brief title, brief summary, detailed
description, and eligibility criteria). A gene match is
positive if at least one overlapping UMLS concept exists.
We obtain gene synonyms if the gene match is negative
using the NCBI [39] Gene API. We then perform an
exact term match of the gene (including gene synonyms)
with the trial metadata. If there is a positive gene match,
we then perform a gene variant match which simply
involves an exact term match with the ‘Variant’ part of
the ‘Gene’ field with the same trial metadata as used
during the gene match. Since most gene and mutation
information are single tokens, we also compute term
frequency terms for a gene, its gene synonyms, and
mutation.

2) Computing PageRank score: Given the set of retrieved
trials, we use them to construct an undirected graph and
then apply the PageRank algorithm. We follow exactly
the same strategy as previously defined in Section IV-C1.
Here, a key difference is that the retrieval is based on
quite general fields of a query, such as Disease and
Demographics. Thus, on average, the retrieved trial set’s
size is significantly larger than our constructed dataset
(around 100 trials per query). Therefore, we add a higher
similarity threshold (Szymkiewicz–Simpson or Overlap
coefficient > 0.4) while forming edges in the PageRank
graph.

V. EXPERIMENTS AND RESULTS

In this section, we first describe our experimental setup,
i.e., baselines and evaluation setup. After that, we perform the
evaluation of retrieval and relevance-based ranking framework.
Finally, we also discuss the performance of MPSS on the
TREC 2018 Precision Medicine benchmark dataset.

A. Experimental Setup

This section describes the baselines and metrics used for
evaluation.

1) Baseline Models: We only consider unsupervised ap-
proaches due to the lack of training data. We explore the
state-of-the-art search systems for ‘TREC-PM 2017 Task-
B’ that focus on clinical trials. We observe that they either
do not publish well-documented codebases or use cancer-
specific ontologies like COSMIC [40], making it unsuitable
for developing disease-independent trial search systems. We
consider the following baselines:

1) BAS: Proposed by Throve [10] in the TREC 2017
Precision Medicine Track [3]. It uses ElasticSearch API
for the retrieval task where the following fields of

clinical trials - brief title, brief summary, and then use
the Okapi BM25 as the ranking function.

2) STM: UMLS concept based approach proposed by [9].
3) METASTM: We update the STM method by adding the

metapath based search results.
To the best of our knowledge, these systems do not use any

disease-specific knowledge bases (particularly oncology-based
trials) and have made their codebase publicly available.

2) Evaluation Setup: We measure the precision score at
5, 10, 15, and 20 for the entire query set. Since the complete
ground truth set of clinical trials for each query is not available,
it is not possible to measure recall. For the TREC 2018
Precision Medicine task, we use the same test set of 50
queries and report the same official evaluation metrics of
Precision@10, R-precision, and infNDCG, when compared
with the SOTA models [12], [20], [41] for a fair comparison.

B. Performance Evaluation of Retrieval Stage

We evaluate the proposed metapath-based similarity search
formulation where each clinical trial is strongly associated
with a list of the five most similar trials. We use the proposed
clinical trial similarity search method to retrieve more trials.
We now investigate whether this similarity search improves
the retrieval performance and mitigates the sparsity issues
introduced by the clinical trials graph. We mainly target the
queries where the number of trials retrieved is less than 21. On
manual inspection, we observe that the additional trials added
to the original retrieved set of trials using the metapath-based
similarity search are relevant to the query. This attests to the
maintenance of the ‘quality of search aspect.’ We achieve 35%
coverage improvement of METASTM over STM. Introducing
a heterogeneous information network improves recall by 10%
on the TREC-PM task. The improvements at maxSS=3, 5, 7,
and 9 are 42%, 59%, 86%, and 92% respectively, as shown in
Figure 4.

We incorporate the ‘quality of search’ aspect while devel-
oping the retrieval component of a clinical trial, empirically
determining the maximum number of similar trials obtained
for each trial (maxSS) as five. The precision at ranks 5, 10
of MPSS with threshold value seven drastically drops by
33.4% and 37% respectively as compared to the performance
of MPSS with threshold five. Therefore, maxSS=5 helps to
maintain a balance between recall and precision.

C. Performance Evaluation of Rankings based on Relevance

We compare the rankings of METARRF, METAADV,
METACOMB in terms of mean precision values computed
based on relevance (we do not have ground truth to evaluate
the other ranking aspects) at different ranks of 5, 10, 15
and 20, as shown in Table VI. We incorporate the query
type information through the final model MPSS, where we
identify queries that highlight the safety aspect of a trial.
METACOMB outperforms all the competing baseline mod-
els in mean precision values at all ranks (5, 10, 15, and
20). We further observe that the performance improvement
between METASTM and METACOMB is evident based on



Fig. 4. CDF plot of SimSet(CT) distribution for different Maximum SimSet
size (maxSS) values

TABLE V
RETRIEVAL PERFORMANCE COMPARISON FOR DIFFERENT MAXIMUM

SIMILARITY SET THRESHOLD VALUES (K) OF MPSS. k = 0 IS SAME AS
STM (WITHOUT METAPATH) MODEL.

Query Maximum Similarity Set Size
0 3 5 7 9

already having Celiac Disease 19 23 24 24 24
constipation safe treatments 13 18 25 25 25
Dietary Therapy Epilepsies 9 15 20 23 23
HIV infection Treatment naive 12 23 25 37 43
Hypercholesterolemia safe treat-
ments

17 21 24 30 30

safe treatment for Alzheimer dis-
ease

16 27 27 30 30

Treating Anemia, Iron-Deficiency
in CKD patients

15 16 16 19 19

their absolute value, but they are not statistically significant.
This is due to the limited ground truth data comprising only
25 points and thus requires a larger performance difference
to achieve statistical significance. This result is interesting
because METACOMB (that gives weight to aspects other than
relevance) performs comparably with a relevance-only model
(METASTM) and strongly indicates that the aspect-based rank
fusion approach does not reduce the quality of search.

METASTM outperforms STM (its non-metapath ver-
sion) at all ranks; the difference increases as we move
from rank 5 to rank 20. We also observe that the absolute
value of performance improvement in terms of mean precision
value is least in the case of Precision@5 and maximum for
Precision@20. This implies that the previous methods work
well when the retrieved trials are highly similar to the query
but fail to accommodate the borderline cases where the trials
are not directly similar but still relevant to the query. We
observe that METARRF performs poorly compared to STM.
This indicates that the simple strategy of assigning equal
weights to the different aspects fails. This indicates that:
(i) some aspects are more important than others and hence
should be given more weight, (ii) it depends on the type of
query, or (iii) both are possible. Intuitively, we incorporate
the ‘adversity’ aspect as the primary aspect during a clinical

TABLE VI
PERFORMANCE COMPARISON OF RELEVANCE RANKING MODELS. WE

REPORT PAIRED T-TESTS TO CHECK FOR STATISTICAL SIGNIFICANCE. ***
INDICATES P-VALUE < 0.001, ** FOR P-VALUE < 0.01, * FOR 0.01 <

P-VALUE < 0.05

Query
Type

Model P@5 P@10 P@15 P@20

Type-I METARRF 0.6 0.46 0.48 0.5
METAADV 0.96 0.92 bf 0.89 0.77

Type-II METAADV 0.43 0.46 0.44 0.44
METARRF 0.52 0.53 0.46 0.47

BAS 0.12 0.08 0.08 0.08
STM 0.56 0.520.06 0.47* 0.46**

All METASTM 0.59 0.56 0.54 0.52
METARRF 0.540.07 0.51* 0.47* 0.480.07

METAADV 0.54 0.55 0.53 0.51
METACOMB 0.62 0.60 0.55 0.54

trial search and make a trade-off with the relevance of a trial.
This may consequently harm search performance. However,
through the METAADV model, we perform comparably with
STM and additionally incorporate the adversity aspect for
ranking the trials.

Finally, we perform a query-wise analysis of precision and
nDCG@20 values. We observe that STM shows significant
improvement for 10 such queries. However, STM achieves a
precision@10 value of less than 0.31 for 28% cases because of
the limitation during the retrieval stage. For 3 out of 25 queries,
BAS retrieves at least five trials and reports the precision
scores as 1.0 (outperforming STM in all cases). The trials
retrieved by BAS will always be relevant because it performs
exact lexical matching between a query and the brief title of a
clinical trial. We prefer dealing with UMLS concepts because
the query has many variations, making direct matching quite
difficult. In the case of STM, one-fifth of the trials (five
in total) have poor retrieval performance and are unable to
retrieve at least 20 trials for a given query, whereas, in the
case of METASTM, for every query, we have at least twenty
trials except for one query only. We observe that METAADV
achieves very high precision@10 values of around 0.9 and
significantly higher than METARRF for only Type-I queries. In
contrast, for only Type-II queries, METARRF performs much
better than METAADV. This shows that the extended retrieval
stage can address the sparsity of clinical trial search.

D. Performance Evaluation on TREC Precision Medicine
Benchmark Dataset

We show the performance comparison between MPSS
and the state-of-the-art (SOTA) models of the TREC 2018

TABLE VII
PERFORMANCE EVALUATION OF MPSS ON TREC 2018 PRECISION

MEDICINE BENCHMARK DATASET

Model Prec@10 R-Prec infNDCG
Cat Garfield [12] 0.626 0.4294 0.5504
ims unipd [20] 0.566 0.413 0.0.540

UTDHLTRI [41] 0.538 0.3675 0.4794
MPSS (ours) 0.432 0.303 0.281



Fig. 5. Query-wise Precision@10 scores achieved by MPSS on the TREC
2018 Precision Medicine task. Each query is identified by a unique topic id.

Precision Medicine task in Table VII. Figure 5 shows the
query-wise precision@10 scores for our MPSS model. MPSS
achieves a modest Precision@10 score of 0.432 as com-
pared to the TREC-PM 2018 state-of-the-art model (Team
Cat Garfield) score of 0.626 (as reported in Roberts et
al. [31]). MPSS achieves precision at ranks one, two, and
five of 0.5, 0.42, and 0.46, respectively, and a decent recall
performance of 0.588. MPSS is more interpretable than
the black box SOTA models because one can identify the
connection between the query and the final retrieved set of
trials. For example, However, the performance gap between
MPSS and the SOTA models is quite expected due to the
following reasons: (i). The SOTA models utilize the ground-
truth data from the 2017 TREC Precision Medicine task to
perform supervised learning. In contrast, MPSS is purely
unsupervised and does not utilize any training data. (ii).
Unlike SOTA models, MPSS do not utilize disease-specific
knowledge sources such as COSMIC [40] because of its
disease-independence nature.

We observe that the addition of the drug interactions and
gene-drug linked publications data (INT), followed by the
addition of the new metapath based on Pubmed references, im-
proves over MPSS without Pubmed-enhanced retrieval model
by 9.75% (0.359 to 0.394) in terms of Precision@10 scores.
Next, with the addition of term frequency of the gene,
gene synonym, and mutation information to the relevance
ranking function, the precision at rank ten (Prec@10) further
improved from 0.394 to 0.432 (+9.64%). Thus, there is a
scope to improve the relevance scoring function. We believe a
cancer-specific knowledge base like COSMIC [40] may further
improve gene relevance computation.

VI. CONCLUSION

In this paper, we propose a metapath-based similarity search
approach, MPSS, for clinical trial search across multiple
disease classes. The primary challenges in trial retrieval are
the sparsity, term mismatch between query and documents,
and explainability of the retrieved trials. We construct a novel
heterogeneous information network of both clinical trials and
linked Pubmed articles to alleviate the sparsity issue. Further,
we explore the path-based retrieval approach that becomes
explainable to the end users. Finally, we provide a combined
ranked list based on relevance, adversity, and popularity. We
contribute an annotated (query-relevant trial) retrieval set for
25 queries (95 trials are annotated per trial on average) across
five disease classes. We also evaluate MPSS in a zero-shot
setting (without any task-specific training) on the benchmark
dataset of the TREC 2018 Precision Medicine Track. We make
all the codes and data publicly available at https://github.com/
roysoumya/MPSS-clinical-trial-search. Specifically, we con-
tribute a disease-independent evaluation dataset for clinical
trial search systems that may encourage more research in this
critical domain.
Limitations. Our developed dataset is not exhaustive, i.e., we
do not capture all acronyms and ‘micro-text’ variations of a
query. We fail to perform when queries contain medical history
information such as already having celiac disease, antiretro-
viral therapy first time, etc. We could consider inclusion and
exclusion criteria to address these issues and further extend
our dataset.
Future Work. We plan to extend our dataset by incorporating
more disease classes and richer queries. The queries could be
formulated based on the ‘exemplar query’ formulation [42].
We will improve the trial coverage of the heterogeneous
information network by including trials that do not have a
linked publication, making MPSS more practically useful.
Subsequently, we can improve our heterogeneous information
network by incorporating more edge types and populating
them through a continuous learning strategy. In the future,
we would like to deploy an online system to collect user
feedback and update MPSS. We can use the large (con-
structed) heterogeneous information network to learn optimal
node representations ( [43], [44]), specifically clinical trial
nodes. This may help improve the performance of downstream
tasks such as similarity search [44].
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